
Bavarian: Betweenness Centrality Approximation with
Variance-Aware Rademacher Averages

Cyrus Cousins
Dept. of Computer Science

Brown University
Providence, RI, USA

ccousins@cs.brown.edu

Chloe Wohlgemuth
Dept. of Computer Science

Amherst College
Amherst, MA, USA

cwohlgemuth22@amherst.edu

Matteo Riondato
Dept. of Computer Science

Amherst College
Amherst, MA, USA

mriondato@amherst.edu

“[A]llain Gersten, Hopfen, und Wasser” — 1516 Reinheitsgebot

ABSTRACT
We present Bavarian, a collection of sampling-based algorithms
for approximating the Betweenness Centrality (BC) of all vertices
in a graph. Our algorithms use Monte-Carlo Empirical Rademacher
Averages (MCERAs), a concept from statistical learning theory, to
efficiently compute tight bounds on the maximum deviation of the
estimates from the exact values. The MCERAs provide a sample-
dependent approximation guaranteemuch stronger than the state of
the art, thanks to its use of variance-aware probabilistic tail bounds.
The flexibility of the MCERA allows us to introduce a unifying
framework that can be instantiated with existing sampling-based
estimators of BC, thus allowing a fair comparison between them,
decoupled from the sample-complexity results with which they
were originally introduced. Additionally, we prove novel sample-
complexity results showing that, for all estimators, the sample size
sufficient to achieve a desired approximation guarantee depends on
the vertex-diameter of the graph, an easy-to-bound characteristic
quantity. We also show progressive-sampling algorithms and exten-
sions to other centrality measures, such as percolation centrality.
Our extensive experimental evaluation of Bavarian shows the im-
provement over the state-of-the art made possible by the MCERA,
and it allows us to assess the different trade-offs between sample
size and accuracy guarantee offered by the different estimators.

CCS CONCEPTS
•Mathematics of computing→ Probabilistic algorithms; • In-
formation systems→ Social networks; • Theory of computa-
tion→ Shortest paths;Dynamic graph algorithms; Sketching
and sampling; Sample complexity and generalization bounds;
Approximation algorithms analysis.

KEYWORDS
Concentration bounds, Dynamic graphs, Percolation centrality, Ran-
dom sampling, Sample complexity, Statistical learning theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08…$15.00
https://doi.org/10.1145/3447548.3467354

ACM Reference Format:
Cyrus Cousins, Chloe Wohlgemuth, and Matteo Riondato. 2021. Bavarian:
Betweenness Centrality Approximation with Variance-Aware Rademacher
Averages. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3447548.3467354

1 INTRODUCTION
A centrality measure [11] assigns to each vertex or edge in a graph
a score that quantifies the importance of that vertex/edge. Many
measures and algorithms for them have been introduced in the
literature, from simple ones like degree to sophisticated ones based
on shortest paths, such as closeness centrality [5] and betweenness
centrality [2, 26], which is the focus of this work.

Informally, Betweenness Centrality (BC) quantifies the impor-
tance of a vertex/edge I as the fraction of all Shortest Paths (SPs) in
the graph that go through I (see (1)). It is a measure of robustness,
in addition to being a centrality measure [10]: if a vertex/edge with
high BC is removed from the graph, then the SPs between many
pairs of vertices will change, or even cease to exist. BC has many
practical applications from community detection [47], to the study
of the resilience of the electrical grid [42], to genomics [28].

Computing the exact BC of every vertex/edge in a graph � =

(+ , �) is quite expensive. Brandes’s algorithm (BA) [14], the state
of the art, takes time $ (|+ | |� |) if � is unweighted, and $ (|+ | |� | +
|+ |2 log|+ |) otherwise. These running times are too slow to be prac-
tical on even moderately-sized networks. For this reason, soon after
the exact algorithm had been introduced, sampling-based approxi-
mation algorithms were proposed [16, 33]. Approximate BC scores
are sufficient and acceptable in practice when they come with strong
guarantees on their quality, i.e., with an upper bound on the maxi-
mum deviation of any BC estimate from its unknown exact value
(i.e., a bound on the maximum estimation error). Good estimates
are particularly valuable when the graph evolves in a fully-dynamic
way, that is, when edges and vertices are arbitrarily inserted and
removed over time. In this setting, computing the exact BC of each
vertex/edge, is not only expensive, but also has limited value, as
these scores continuously change. High-quality approximations are
sufficient, and are easy to maintain after updates to the graph.

Sampling-based algorithms exhibit an inherent trade-off between
the sample size and the quality guarantee: the larger the sample, the
smaller the upper bound on themaximumdeviation is, i.e., the better
the guaranteed quality of the estimates. Improved characterizations

https://orcid.org/0000-0003-2523-4420
https://doi.org/10.1145/3447548.3467354
https://doi.org/10.1145/3447548.3467354
https://doi.org/10.1145/3447548.3467354

of this trade-off allows for stronger quality guarantees. Previous
works studying the trade-off [12, 16, 18, 27, 53, 55] (see Sect. 2 for
an in-depth discussion of these and other relevant contributions)
also often introduce novel sampling-based estimators for BC, and
limit the characterization of the trade-off to a single estimator,
usually the one they propose. Different estimators draw samples
from different populations (e.g., single vertices, pairs of vertices, or
single SPs, see Sect. 3.2), so it is not possible to fairly compare the
quality guarantees they offer, i.e, the different characterizations of
the sample-size-vs-accuracy-guarantee trade-off. While interesting
from theoretical and practical points of view, this proliferation
of estimators does not help users in choosing which estimator to
employ, and which characterization gives the best “bang for the
buck,” especially as there may be even better characterizations.

Contributions. We present Bavarian, a suite of sampling-based
algorithms for approximating the BC of all vertices in a large graph.
Our contributions are the following.
• Bavarian is an algorithmic framework that can be instantiated
with BC estimators (Sect. 3.2), enabling the study of their
different computational and statistical trade-offs (Sect. 5). This
unifying approach can be used for both static and progressive
sampling algorithms (Sect. 4.2), and extended to variants of
BC, to percolation centrality, and to dynamic graphs (Sect. 4.3).
• Our analysis of Bavarian uses Monte-Carlo Empirical Rade-
macher Averages (MCERAs) (Sect. 3.3), a key concept from
statistical learning theory [60].The variance-aware tail bounds
(Thm. 3.1) for theMCERAs exploit the low variance of BC func-
tions (Sect. 3.3), resulting in a tight characterization of the
sample-size-vs-accuracy trade-off, and thus in better quality
guarantees at smaller sample sizes than previously possible.
• Our unifying framework, and the use of the MCERAs, allows
us to show that, for every estimator, the sample size sufficient
to (probabilistically) obtain a desired accuracy depends on the
vertex diameter (Sect. 4.1), a characteristic and easy-to-bound
quantity of the graph. Previous estimator-specific bounds de-
pend on the size of the largest connected component [55], or
on the number of vertices [16], which are much larger than the
vertex diameter. This result generalizes one by Riondato and
Kornaropoulos [53, Coroll. 1] for a specific estimator. At its
core, there are SP-enforcing families, a novel concept of inde-
pendent interest. This result is not just of theoretical interest:
we use it to develop sample schedules for practical progressive
sampling algorithms (Sect. 4.2).
• Our experimental evaluation (Sect. 5) shows the improvement
in the quality guarantee offered by Bavarian over the state-
of-the-art, which is made possible by the use of the MCERAs.
We also analyze the behavior of different estimators for BC,
in a first fair comparison enabled by our unifying framework.

Due to space limitations, some proofs are deferred to App. A.2,
while others are presented only in the extended online version at
http://bit.ly/bvext, together with additional experimental results.

2 RELATEDWORK
We now discuss the contributions on BC most related to ours. BC
was originally introduced in sociology [2, 26], and many variants
have been developed since then [13, 15, 23, 39, 46, 48, 49]. In this

work, we focus on vertex BC, but the versatility of our approach
allows us to tackle other variants (see Sect. 4.3).

The first efficient algorithm for BC [14], known as Brandes’ algo-
rithm (BA), uses an ingenious recursive formulation to obtain the
BC of all vertices in time proportional to = Single-Source-Shortest-
Paths (SSSP) computations in an =-vertex graph. The time complex-
ity on unweighted graphs is $ (=2 + =<) where< is the number
of edges in the graph, and becomes $ (=< + =2 log=) on weighted
graphs. Despite the remarkable efforts to make this algorithm more
scalable in practice [24, 52, 56], its cost is still excessive even for
non-humongous graphs. Approximation algorithms [8, 9, 12, 16, 18,
27, 33, 45, 53, 55] and heuristics [3, 25, 43, 44] propose to address
this shortcoming. We focus here on works that offer guarantees on
their output (see also Sect. 3.2). We refer the reader to [53, Sect. 2]
and [11] for an in-depth discussion of the heuristics.

All approximation algorithms for BC are based on random sam-
pling, but they draw samples from different populations according
to different distributions, compute the approximations using dif-
ferent estimators, and their authors use different approaches to
analyze the quality guarantees they offer. Our work has two goals:
(1) present Bavarian, a unifying framework that can be instantiated
with all these estimators, thus allowing a fair comparison between
them; and (2) use the MCERAs to obtain tighter quality guarantees
and better dependency on graph properties for all estimators.

Brandes and Pich [16] and independently Jacob et al. [33] present
the first sampling-based approximation algorithm for computing
high-quality estimates of the BC of all nodes. Their estimator is
closely related to the inner workings of BA, and the analysis of
the sample size vs. quality trade-off uses Hoeffding’s bound [32]
and the union bound, thus it is quite loose. Geisberger et al. [27]
present a slight refinement of the estimator, but the sample size
is unchanged. Chehreghani et al. [18] present a sampling-based
algorithm for estimating the BC of a single node. Extending the
guarantee to all nodes via union bound results in the same sample
size as the algorithm by Jacob et al. [33] and Brandes and Pich [16].

Riondato and Kornaropoulos [53] propose a new estimator (see
Sect. 3.2) and an approximation algorithm whose sample size is
obtained using an upper bound to the Vapnik-Chervonenkis di-
mension [61] of the problem. This quantity depends on the vertex-
diameter of the graph (the largest number of vertices on a shortest
path). The resulting sample size is therefore much smaller than
the one derived by previous works, while still being the result of
a worst-case analysis. Bergamini and Meyerhenke [8] show how
to better approximate the vertex-diameter on directed networks,
but they use the same sample size, as does, in the worst case, the
progressive-sampling algorithm by Borassi and Natale [12].

Riondato and Upfal [55] introduce another novel estimator (see
Sect. 3.2) and an approximation algorithm whose analysis uses Ra-
demacher averages [37], another core concept of statistical learning
theory. Rademacher averagesmore tightly characterize the trade-off
between sample size and approximation quality using only sample-
dependent quantities, rather than relying on graph-dependent (i.e.,
population-dependent) properties. As a result, the same approxi-
mation quality can be obtained with much smaller samples than
before. Our work does not use deterministic upper bounds to the
Rademacher averages. Rather, we leverage Monte-Carlo estimation

http://bit.ly/bvext

(see (5)) and variance-aware tight deviation bounds (see Thm. 3.1),
to achieve both aforementioned goals.

Recently, Fan et al. [25] used graph neural networks to approxi-
mate the top-: nodes with highest BC, but without guarantees on
the output. As argued in Sect. 1, quality guarantees are important,
if not necessary, to make approximate solutions acceptable.

Modern graphs often arise from dynamic processes, in which
vertices and edges are continuously added and/or removed. Many
works look at how to compute and update BC, either exactly or
approximately, after an update or batch of updates [8, 9, 29, 31, 35,
40, 51, 55, 62]. We discuss how to adapt our results to the fully-
dynamic case in Sect. 4.3.

3 PRELIMINARIES
We now state definitions and theorems used throughout the work.

3.1 Betweenness Centrality
Let� = (+ , �) be a graph. The edges may be directed or undirected
and may have non-negative weights. We denote with = = |+ | the
number of vertices in� . For ease of discussion, we assume the graph
to be readily available so that operations such as sampling a vertex
or a pair of vertices uniformly at random is easy. When this assump-
tion does not hold, one can use appropriate methods to draw these
samples [19, 20, 36]. We define a path ? from a vertex D to a vertex
E as an ordered sequence of distinct vertices (D, I1, . . . , I |? |−2, E).
Given a path ? between vertices D and E , a vertexF is internal to ?
if and only ifF ≠ D,F ≠ E , andF ∈ ? . We denote the set of vertices
internal to a path ? as int(?). The length of a path ? is |? | − 1 if
the edges do not have weights and is the sum of the weights of the
edges (D, I1), (I1, I2), . . . , (I |? |−2, E) otherwise. Any path ? from D

to E that has the minimum length among all the paths from D to
E is known as a Shortest Path (SP). For any ordered pair of distinct
vertices (D, E), let ΓDE denote the set of SPs from D to E , and let
fDE = |ΓDE |. We use fDE (F) to denote the number of SPs from D to
E thatF is internal to.

The Betweenness Centrality (BC) b(F) of a vertexF ∈ + is [2, 26]

b(F) � 1
=(= − 1)

∑
(D,E) ∈+×+

D≠E

fDE (F)
fDE

(∈ [0, 1]) . (1)

There exist many variants of BC [13, 15, 23, 39, 46, 48, 49]. For ease
of presentation, we focus on the one for vertices, but our results
can be extended to many of these variants (see Sect. 4.3).

Computing the exact BCs for all vertices is expensive [14] (see
also Sect. 2). In this work, we are interested in estimating the BCs
of all vertices, using different “approaches” (see Sect. 3.2) that offer
probabilistic guarantees on the quality of the estimates that they
compute. All approaches rely on random sampling: given the graph
� , a user-defined sample size< > 0 and a user-defined acceptable
failure probability X ∈ (0, 1), approach A creates a sample S =

{G1, . . . , G<} by drawing< independent samples from an approach-
specific, �-dependent, population DA,� according to an approach-
specific distribution cA over DA,� (for ease of notation, we will
often drop � when it is clear from the context, and just use DA).
A uses S to compute the estimate b̃A,S (F) for every vertexF (for
ease of notation we will often drop S when it is clear from the
context, and just use b̃A (F)). For any approach A we consider, and

anyF ∈ + , the estimate b̃A,S (F), is the sample mean over S of a
function 5F defined over DA,� , i.e.,

b̃A,S (F) =
1
<

∑
G ∈S

5F (G),

and it is unbiased, i.e., its expectation w.r.t. the choice of S is the
exact BC b(F). Also, for any approachA and any sample size< > 0,
there is a function epsA,< (·) from D<

A × (0, 1) to the non-negative
reals R+ such that, with probability at least 1 − X over the runs
of A with the same inputs � , <, and X , all estimates are within
epsA,< (S, X) from their exact value. In other words, it holds

Pr
(
∃F ∈ + s.t.

���b(F) − b̃A,S (F)
��� > epsA,< (S, X)

)
< X . (2)

One of our goals is to compare epsA1,<
(·), epsA2,<

(·), …, for differ-
ent approaches A1, A2, …, as they give different characterizations
of the trade-off between sample size and accuracy guarantees.

3.2 BC Estimation
We now review existing approaches for BC estimation. For each
approach A, we define a domainDA, a family FA of functions from
DA to [0, 1], and a probability distribution cA over DA.

The RK estimator. Riondato and Kornaropoulos [53] introduce a
BC estimator that is tailored to their use of VC-dimension [61] for
the analysis of the sample size sufficient to obtain a high-quality
estimate of the BC of all nodes. The domain Drk is the set of all
shortest paths between all pairs of vertices in the graph � , i.e.,

Drk �
⋃

(D,E) ∈+×+
D≠E

ΓDE .

Let ?DE ∈ Drk be any SP from D to E ≠ D. The distribution crk over
Drk assigns to ?DE the probability mass

crk (?DE) =
1

=(= − 1)fDE
.

Riondato andKornaropoulos [53] show an efficient sampling scheme
to draw independent samples from Drk according to crk. The cost
of drawing a sample is essentially that of a truncated SSSP computa-
tion from D to E . The family Frk of functions contains one function
5F : Drk → {0, 1} for each vertexF , defined as

5F (?) �
{
1 ifF ∈ int(?)
0 otherwise

.

The same estimator is used by Borassi and Natale [12] for a pro-
gressive sampling algorithm for BC estimation.

The ABRA estimator. The ABRA algorithm [55] uses an estimator
defined over the domain

Dab � {(D, E) ∈ + ×+ : D ≠ E},
i.e., over the pairs of different vertices. The distribution cab is uni-
form over Dab; thus sampling from it is easy, per our assumptions.
The family Fab contains a function 5F for each vertexF , defined as

5F (D, E) �
fDE (F)
fDE

∈ [0, 1] . (3)

Given (D, E) ∈ Dab, one can compute the value of 5F (D, E) for each
F in time proportional to performing a truncated SSSP from D to E .

The BP estimator. Jacob et al. [33], and independently Brandes
and Pich [16] introduce a BC estimator that is closely related to
how Brandes [14]’s algorithm computes the exact BC of all nodes.
The domain Dbp is the set + of vertices in � , and the distribution
cbp is uniform over this set. The family Fbp contains one function
5F for each vertexF , defined as

5F (E) �
1

= − 1
∑
I≠E

fEI (F)
fEI

∈ [0, 1] . (4)

The value 5F (E) can be computed by performing a (full) SSSP com-
putation from E , and then backtracking along the resulting SP DAG
as in the exact BC algorithm BA by Brandes [14]. Geisberger et al.
[27] present a variant of the BP estimator to ameliorate some of
its issues. The theoretical guarantees of this variant and its compu-
tation are essentially the same as the BP estimator, and the same
observations we make for BP can be extended to this variant.

For technical reasons, the constant zero function must belong
to FA. This requirement is automatically satisfied when the graph
contains at least one vertex with only one neighbor. When such a
vertex does not exist, we just add this function to FA.

3.3 Bounding the Supremum Deviation
We now define the Supremum Deviation (SD), the Monte-Carlo
Empirical Rademacher Average (MCERA), and the wimpy vari-
ance, and discuss their relationship. We tailor the definitions to our
settings, and refer the reader to the book by Shalev-Shwartz and
Ben-David [57, Ch. 26] for in-depth discussion.

Let F be a family of functions from a domain D to [0, 1]. Let
c be a distribution over D, and < be a positive natural. Given
a bag (sample) S = {G1, . . . , G<} of < samples from D drawn
independently according to c , the Supremum Deviation (SD) of F
on S is defined as

SD(F ,S) � sup
5 ∈F

�����ES [5] − 1
<

∑
G ∈S

5 (G)
����� .

The SD is the key concept in the study of empirical processes [50].
Sample-dependent quantities, such as the popular Empirical Ra-
demacher average (ERA) [37], can be used to derive probabilistic
upper bounds to the SD. In this work, we use a Monte-Carlo esti-
mation of the ERA, first introduced by Bartlett and Mendelson [4].
For : ≥ 1, let � = {,1, . . . ,,<} be a bag of< i.i.d. :-dimensional
Rademacher vectors, i.e., vectors whose entries are drawn inde-
pendently and uniformly from {−1, 1}. The :-Trials Monte-Carlo
Empirical Rademacher Average (:-MCERA) R̂:

< (F ,S,�) of F on S
using � is

R̂:
< (F ,S,�) �

1
:

:∑
9=1

©«sup5 ∈F

1
<

∑
G8 ∈S

,8, 9 5 (G8)ª®¬ . (5)

The expectation of the :-MCERA w.r.t. both S and � is known as
the Rademacher Average R< (F , c) [37], and is a cornerstone of
statistical learning theory. While Rademacher averages control the
expected SD, the sharpest probabilistic bounds use the :-MCERA
and depend on the variances of the functions in F . This fact is nat-
ural, since for each 5 ∈ F , the variance V[5] controls SD({5 },S),
asymptotically through the Central Limit Theorem, or via Ben-
nett’s inequality [6] with finite sample guarantees. The maximum

variance of a function 5 ∈ F would therefore control SD(F ,S).
BC values are typically very small on large graphs, thus, for 5 in
any of the families from Sect. 3.2, it is reasonable to assume that
V[5] � Ec

[
5 2

]
− (Ec [5])2 ≈ Ec

[
5 2

]
, which is the raw variance

of 5 ; henceforth all variances are raw unless otherwise noted. We
define the (raw) wimpy variance v, and its estimator V , as

v � sup
5 ∈F
Ec

[
5 2

]
and V � sup

5 ∈F

1
<

∑
G8 ∈S

(5 (G8))2 . (6)

Clearly both v and V depend on F , and the families discussed in
Sect. 3.2 have different wimpy variances.

The following result (proof in the extended online version at
http://bit.ly/bvext) shows how to use the :-MCERA to compute an
upper bound to the SD using only sample-dependent quantities.
The reader is invited to compare this result to Cousins and Riondato
[21, Thm. 4], wherein the authors derive a similar bound involving
centralized variances and Rademacher averages. We eschew such an
approach here, as when all centralities are near-zero, centralization
greatly complicates the analysis and yields larger constant-factors,
with negligible benefit.

Theorem 3.1. Let [∈ (0, 1), and define the quantities

W � V +
2 ln 5

[

3<
+

√√√√(
ln 5

[√
3<

)2
+
2V ln 5

[

<
,

d � R̂:
< (F ,S,�) +

2 ln 5
[

3:<
+

√
4V ln 5

[

:<
,

A � d +
ln 5

[

3<
+

√√√√(
ln 5

[

2
√
3<

)2
+
d ln 5

[

<
,

Y � 2A +
ln 5

[

3<
+

√
2 (W + 4A) ln 5

[

<
, (7)

Then, with prob. at least 1 − [over the choice of S and �, it holds

SD(F ,S) ≤ Y .

The quantity W is an upper bound to v, while d is an upper bound
to the ERA, which is the expected value of the :-MCERA w.r.t. �,
and A is an upper bound to the expectation of the ERA w.r.t. S. The
apparent complexity of this result (in part due to the need to fit
the expressions into the text column width) is due to the fact that
it better characterizes the trade-off between the sample size (and
other properties of the sample) and the quality of the estimates,
by leveraging the empirical wimpy variance, i.e., the quantity V

in (6). By looking at prior work under the lens of variance, one
can see that the Hoeffding+union bound and the VC-dimension
theorem, used respectively by Brandes and Pich [16] and Riondato
and Kornaropoulos [53], assume the worst-case possible variance,
while the bound used by Riondato and Upfal [55] improves to
an exponential average over variances. These approaches are not
sensitive to any correlation between the quantities to estimates,
whereas the :-MCERA is. This advantage is one of the reasons why
we choose them: this sensitivity is relevant to BC estimation, as the
scores of nearby vertices are strongly correlated, thus one should

http://bit.ly/bvext

leverage these correlations when computing the approximation
quality guarantee.

It holds Y ∈ 2R̂:
< (F ,S,�) + O

(
ln 1

[

<
+

√
(v + R< (F , c)) ln 1

[

<

)
.

Each 5 used for BC estimation has codomain [0, 1], so v = Ec
[
5 2

]
≤

Ec [5] ≤ maxE∈+ b(E). Thus, Y is, in some sense, “output-sensitive,”
as it depends on the maximum BC.

As F is fixed, the quantity on the r.h.s. of (7), is a function
gF (S, [) depending only on S and on [. For every approach A
from Sect. 3.2, we can define the function epsA,< (·) used in (2) as

epsA,< (S, X) = gFA (S, X) .

4 THE Bavarian FRAMEWORK
We now present Bavarian, our unifying algorithmic framework
for BC estimation. Bavarian uses the :-MCERA and the variance-
aware tail bound from Thm. 3.1 to compute the sample-dependent
approximation quality, and can be instantiated with any of the
estimators discussed in Sect. 3.2. The pseudocode is shown in Alg. 1.

Algorithm 1: Bavarian
Input: method A, graph � , sample size<, failure

probability X , number of Monte Carlo trials :
Output: (�̃, Y) with the properties presented in Thm. 4.1

1 sums← map from + to vectors of size : + 2
2 foreach E ∈ + do sums[E] ← (−∞, . . . ,−∞︸ ︷︷ ︸

:

, 0, 0)
3 for 8 from 1 to< do
4 B8 ← drawSample(A, �)
5 / ← getFunctionValues(A, B8)
6 ,8 ← drawRademacher(:)

7 foreach (E, 5E (B8)) ∈ / do
8 sums[E] ← sums[E]+ 5E (B8) · (,8,1, . . . ,,8,: , 5E (B8), 1)

9 �̃ ← {(E, sums[E] [: + 2]/<), E ∈ + }
10 Y ← getEpsilon(sums,<, X)
11 return (�̃, Y)

The input parameters to Bavarian are: a BC estimation method
A ∈ {rk, ab, bp}, a graph� , a sample size< > 0, a failure probability
X ∈ (0, 1), and the number : of Monte Carlo trials for the :-MCERA
(see Sect. 4.1 for a discussion of how to choose< and :). The output
is a pair (�̃, Y), where �̃ is a set of pairs (E, b̃A (E)) for each E ∈ + ,
where b̃A (E) is the estimate of b(E) using A, and Y ∈ (0, 1) is the
probabilistically-guaranteed accuracy as specified in the following
theorem (proof deferred to after the description of the algorithm).

Theorem 4.1. With probability at least 1 − X (over the runs of the
algorithm), the pair (�̃, Y) is such that

max
E∈+

���b̃A (E) − b(E)
��� < Y .

Bavarian first creates a map sums from + to vectors1 of size
: +2 (line 1 of Alg. 1), initialized to contain one key E for each E ∈ + .
The vector sums[E] has : + 2 elements, with the first : initialized to
1We use 1-based indexing for vectors, i.e., the first element has index 1.

−∞ and the last two elements initialized to zero (line 2). We explain
the role of this map below. The algorithm then enters a loop which
is repeated for< iterations (lines 3–8). At the beginning of iteration
8 (line 4), Bavarian draws one element B8 fromDA according to the
distribution cA. For example, if A is ab, the algorithm would draw
a pair (D, E) of distinct vertices uniformly among all such pairs. It
then uses the function getFunctionValues to compute, using the
procedure specified by A, the set

/ = {(F, 5F (B8)) for eachF ∈ + s.t. 5F (B8) ≠ 0} .

For example, if A is ab, / would contain pairs (F, fDE (F)/fDE) for
all and only the verticesF internal to a SP from D to E , where B8 =
(D, E) is the population element drawn at this iteration. Together
with a vector ,8 of : independent Rademacher variables (line 6),
the set / is used to update the map sums to maintain the following
invariant: at the end of every iteration 8 of the loop, it must hold
for each E ∈ + that

sums[E] [I] =

∑8

9=1 , 9,I 5E (B 9) for I = 1, . . . , :∑8
9=1 (5E (B 9))

2 for I = : + 1∑8
9=1 5E (B 9) for I = : + 2;

(8)

After< iterations of the for loop (lines 3–8), the algorithm ob-
tains the BC estimate b̃A (E) for each vertex E as b̃A (E) = sums[E] [:+
2]/<, and stores them in the set �̃ (line 9).The probabilistic accuracy
guarantee Y is computed by the function getEpsilon (line 10). This
function receives as input all the necessary parameters to compute
the value on the r.h.s. of (7): for each E ∈ + , it holds sums[E] [:+1] =∑:
8=1 (5E (B8))

2 = <V , and sums[E] [I] =
∑:
8=1 _8I 5E (B8) for each

I = 1, . . . , : . The output of the algorithm is then (�̃, Y). We can now
prove Thm. 4.1.

Proof of Thm. 4.1. Thanks to the maintained invariant (8), each
estimate b̃A (E), E ∈ + , is a sample mean (over the sample S =

{B1, . . . , B<}) of a specific function 5E , and an unbiased estimator for
the exact BC b(F) = E [5E]. Additionally, the invariant (8) ensures
that all the quantities needed to compute Y as in (7) are available,
and thus the thesis follows from Thm. 3.1. �

4.1 Choosing the parameters< and :

The sample size < and the number : of Monte Carlo trials are
important input parameters of Bavarian. We now discuss how to
choose< as a function of a user-specified desired approximation
quality Ȳ ∈ (0, 1). In Sect. 4.1.1 discuss the choice of : as a function
of<. These results are not just of theoretical interest: we use them
in a progressive-sampling variant of Bavarian in Sect. 4.2.

Minimum sample size. We start by deriving an upper bound to
the minimum sample size< needed for the approximation quality
guarantee Y returned by the algorithm to be no-greater than a user-
desired upper bound Ȳ. From Thm. 3.1 it is evident that Y decreases
as R̂:

< (F ,S,,) and V from (6) decrease, and as< and : increase.
Consider a procedure zeroEpsilon(<, : , [) that, given<, : , and [,
computes Y as inThm. 3.1 with the assumption that R̂:

< (F ,S,,) = 0
(which is the minimum possible because of the requirement that
the zero constant function belongs to F), and V = 0, and let

m∗ (:, [, Ȳ) = min{< > 0 : zeroEpsilon(<, : , [) ≤ Ȳ} . (9)

Fact 1. Bavarian would never return a pair (�̃, Y) with Y ≤ Ȳ if
the passed sample size< is smaller than m∗ (:, [, Ȳ) (and the other
input parameters are : and X = [).

Computing m∗ (:, [, Ȳ) is easily done with a binary search on<
using zeroEpsilon.

For< ≥ m∗ (:, [, Ȳ), the algorithmmay return Y < Ȳ. We leverage
this property in Sect. 4.2, where we use (9) to derive a sample
schedule for a progressive-sampling variant of Bavarian.

Sufficient sample size. We now present a result connecting struc-
tural properties of the graph � to a sample size sufficient for the
algorithm to return an approximation quality bound Y not larger
than the user-desired Ȳ. In the general case, the sample size we
show depends on the vertex-diameter vd(�) of the graph � [53,
Def. 1], i.e., the maximum number of vertices on a SP in � . On
unweighted graphs, the vertex diameter equals the diameter plus
one, as vd(�) counts vertices, while the diameter counts edges. On
weighted graphs, the two quantities are not necessarily related.
All that is really needed is an upper bound to the vertex-diameter,
which is easy to compute in either case (see below). Riondato and
Kornaropoulos [53, Coroll. 1] show that the Vapnik-Chervonenkis
(VC-) dimension [61] of the task of approximating BC using the rk
estimator is upper bounded by blog2 (vd(�) −2)c +1. They then use
this result to derive a sufficient sample size for their BC approxima-
tion algorithm.They also show that, when� is undirected and there
is no more than one SP between any pair of vertices in� , as is some-
times enforced on road networks, the VC-dimension collapses to 3,
independently from the vertex-diameter of the graph [53, Lemma
2]. These results are limited to the rk estimator and do not make use
of the Rademacher averages, which could lead to a much smaller
sufficient sample size. We extend and adapt these results so that
they can also be used to derive sufficient sample sizes for the bp
and ab estimators and when using Rademacher averages, as shown
in the following theorem.

Theorem 4.2. Let 3 ≥ vd(�) or 3 = 3 if� is undirected and there
is at most one SP between any pair of vertices in � . Let

m∗ (Ȳ, [) � 1

Ȳ2

©«4�3 + 4
√
�3 ln 2

[

2
+
ln 2

[

2

ª®®¬ , (10)

where � is a universal constant [30, 38, 58]. When run with inputs
< ≥ m∗ (Ȳ, [), and X = [, Bavarian could return (�̃, Ȳ) rather than
using the computed Y, and Thm. 4.1 would still hold.

The proof of this theorem (in App. A.2) relies on a novel family
of functions that we call SP-enforcing family (Def. A.4), which we
deem of independent interest, and on a result (Lemma A.2) to upper
bound the ERA, i.e., the expectation w.r.t. , of the :-MCERA, with
the VC-dimension, used to adapt the result on the VC-dimension
of BC-estimation with the rk estimator [53, Coroll. 1, Lemma 2] to
Rademacher averages. Theorem 4.2 is not only of theoretical interest.
Rather, it has a double practical impact : (1) a better characterization
of the relationship between sample size and accuracy guarantee
enables the user to better select what sample size to use; and (2)
pushing down the sample size sufficient to obtain a desired approxi-
mation guarantee directly benefits progressive sampling algorithms
(see Sect. 4.2), which can now deterministically terminate earlier.

It is evident from the statement of Thm. 4.2 that an upper bound
to the vertex-diameter of � is sufficient to compute the sufficient
sample size. In unweighted graphs, it is possible to obtain a 2-
approximation of the diameter (thus of the vertex-diameter) with
one SSSP computation by summing the lengths of the two longest
SPs. Bergamini and Meyerhenke [7, Sect. 3] show how to get a good
upper bound to vd(�) on weighted graphs.

4.1.1 Choosing the number of Monte-Carlo trials. The beauty of the
Monte-Carlo bound d in Thm. 3.1 is that the uncertainty error term
added to R̂:

< (F ,S,�) is asymptotically negligible for any choice of
: (i.e., : is absent from the asymptotic form). A value : ≥ 8 would
match the 8A term inside the square root of Y, after which the Monte-
Carlo estimation terms are negligible compared to other error terms.
Constant-factor improvements are still possible for : > 8, though
due to rapidly diminishing returns in : , additional computational
resources are better spent on computing more shortest paths (i.e.,
taking more samples) than increasing : unboundedly.

From a computational perspective, : can be selected so the cost
of computing SPs amortizes the cost of running : Monte-Carlo
trials. Computing the :-MCERA requires O(<: |+ |) time for BC
(often much less for the rk and ab estimators, see also Sect. 5).
Assuming BFS with time complexity O(|� |), it makes sense to have
: ∈ O(|� |/|+ |) trials, and with Dijkstra’s algorithm (time complexity
O(|� | + |+ | log|+ |)), to have : ∈ O(|� |/|+ | + log|+ |).

4.2 Progressive sampling algorithm
The algorithmic framework discussed so far uses static or one-shot
sampling: it draws a single sample S of user-specified size< from
the appropriate population, and uses information from the sample
to compute the quality guarantee Y. In Sect. 4.1, we discussed how
the user can make an informed decision on< based on their de-
sired approximation quality Ȳ. The sample sizes<∗ and<∗ from (9)
and (10) give a range [<∗,<∗] such that Bavarian may return
a value Y smaller than Ȳ when the given sample size< is within
this range. The likelihood that Y is smaller than Ȳ clearly increases
as< gets closer to<∗, and the algorithm is guaranteed to return
Y < Ȳ when< ≥ <∗. We now introduce a more flexible variant of
Bavarian based on progressive sampling: rather than using a single
fixed size sample, our algorithm Bavarian-P uses a sample-schedule
Δ = (<8))−18=0 to iteratively grow the sample S from an initial size
<0 to larger sizes<1, . . . ,<)−1 (where) is the maximum number
of iterations, discussed below). The algorithm stops at the earliest
iteration 8 such that the approximation quality Y obtained from
the sample S at iteration 8 is no larger than the user-desired qual-
ity Ȳ. Thus, Y ≤ Ȳ is the stopping condition of our algorithm. The
computation of Y must handle the fact that we are essentially an-
alyzing multiple samples, as discussed in the proof of Thm. 4.3,
which states the properties of Bavarian-P. We first present the al-
gorithm (pseudocode in Alg. 2) with the sample schedule Δ and the
desired quality Ȳ passed as an input parameters, and then discuss
appropriate choices for Δ. The only requirement on Δ is

<)−1 ≥ m∗ (Ȳ, X/)) (11)

for technical reasons explained in the proof of Thm. 4.3.
Bavarian-P first initializes the data structure sums exactly as

in the static-sampling case (see Alg. 1 and its description), and

Algorithm 2: Bavarian-P

Input: method A, graph � , sample schedule Δ = (<8))−18=0 ,
failure prob. X , no. of MC-trials : , desired quality Ȳ

Output: (�̃, Y) with the properties presented in Thm. 4.3
1 sums← map from + to vectors of size : + 2
2 foreach E ∈ + do sums[E] ← (−∞, . . . ,−∞︸ ︷︷ ︸

:

, 0, 0)
3 <−1 ← 0, 8 ← 0
4 do
5 drawSamplesAndUpdateSums(sums,<8 −<8−1, A, �)
6 if 8 <) − 1 then Y ← getEpsilon(sums,<8 , X/))
7 else Y ← Ȳ

8 8 ← 8 + 1
9 while Y > Ȳ

10 �̃ ← {(E, sums[E] [: + 2]/<8), E ∈ + }
11 return (�̃, Y)

then, starting at 8 = 0, enters a loop (lines 4–9) that continues until
the stopping condition is satisfied (more details in the following). At
each iteration of the loop, the function drawSamplesAndUpdateSums
is called (line 5). It performs the operations on lines 3 to 8 of Alg. 1:
it draws<8 −<8−1 samples from the population, computes the func-
tion values, draws<8 −<8−1 :-dimensional Rademacher vectors,
and appropriately updates sums while maintaining the invariant
from (8). Then (line 6), the algorithm computes the approximation
quality guarantee Y that can be obtained from the sample of size
<8 seen so far, using X/) as the failure probability (as discussed
for Alg. 1). Bavarian-P stops iterating when the computed Y is not
larger than the desired Ȳ, which is guaranteed to be the case when 8
equals) − 1, due to (11). The approximation �̃ is computed (line 10)
and output together with Y. The proof of this theorem is in App. A.2.

Theorem 4.3. With probability at least 1 − X (over the runs of the
algorithm), the pair (�̃, Y) returned by Bavarian-P is such that

max
E∈+

���b̃A (E) − b(E)
��� < Y ≤ Ȳ .

Choosing the sample schedule. Wenowdiscuss reasonable choices
for the sample schedule Δ = (<8))−18=0 . Assume, for ease of presen-
tation, that the number of iterations) is a fixed parameter chosen
by the user. We later remove this assumption. The correctness of
the algorithm requires that the last sample size<)−1 satisfies (11),
and, given what we discussed in Sect. 4.1, it makes no sense to use
a larger sample size than the quantity in the r.h.s. of (11). Thus,
we assume that<)−1 equals this quantity. It follows from Fact 1
that it also does not make sense to have<0 ≤ m∗ (:, X/), Ȳ), where
m∗ is defined in (9). It is not necessarily appropriate to use exactly
this sample size as the first one, for the reason argued in Sect. 4.1,
but this quantity acts as a lower bound. Once<0 and<)−1 have
been fixed, we need to choose) − 2 intermediate sample sizes be-
tween these two extremes. A reasonable approach is to follow a
geometrically-increasing sample schedule, which has been shown
in practice and in theory to be close to optimal [34]. Thus, we have

<8 =<0

(
<)−1
<0

) 8
)−1

, for 8 = 1, . . . ,) − 2 .

The scaling factor <)−1/<0 is a result of fixing the number of
iterations in advance. It is more convenient to let the user specify
a desired scaling factor \ > 1. An unbounded binary search then
finds the minimum number of iterations) ∗ such that there are
exactly) ∗ − 2 sample sizes<8 =<0\

8 for 8 = 1, . . . ,) ∗ − 2 between
the smallest sample size (computed using (9) with [= X/) ∗) and
the largest<) ∗−1 (from (11), potentially smaller than<0\

) ∗−1).

4.3 Extensions
The unifying approach of Bavarian and Bavarian-P allows them
to be adapted to work with many variants of BC and other cen-
trality measures. Due to space limitations, we only remark that
the extensions to other BC variants would follow the approach dis-
cussed in [53, Sect. 6], and de Lima et al. [22] show how to estimate
the percolation centrality via sampling by adapting the work of
Riondato and Kornaropoulos [53] and Riondato and Upfal [55]. One
can similarly adapt Bavarian to estimate percolation centrality.
When dealing with fully-dynamic graphs with arbitrary insertions
and/or deletions of edges and/or vertices, Bavarian can be used as
a drop-in replacement for ABRA, as discussed in [55, Sect. 5].

An interesting direction for future work is understanding the
requirements for centrality measures to be amenable to approxi-
mation using the :-MCERA and/or similar tools. The extension is
less straightforward than it may seem at first, due to the need for
efficient sampling schemes from the appropriate populations.

5 EXPERIMENTAL EVALUATION
We now present the results of our experimental evaluation of Ba-
varian and of the comparison between the different estimators pre-
sented in Sect. 3.2. We do not discuss the performance of Bavarian-
P separately, as it is tightly coupled with that of Bavarian. We
report here only a subset of the results. Results for all datasets and
parameters are in the online version at http://bit.ly/bvext, together
with all code and datasets for reproducibility (see also App. A.1).

Goals. A first goal is to evaluate the behavior of the quality
guarantee Y output by Bavarian as the input parameters< and
: change, and to compare it with that of the state of the art for
each estimator. This comparison allows us to assess the power of
the :-MCERA and of the variance-aware tail bound on the SD
(Thm. 3.1). We also evaluate the trade-off between Y and runtime
for the different BC estimators, to understand which one is more
“efficient” in terms of the accuracy guarantee improvement per
unit of time. Bavarian does not in any way change the empirical
properties of the estimators (e.g., the similarity between the ranking
of the vertices by estimated BC and the ranking by exact BC), so
we do not evaluate them. For in-depth evaluations of such very
important aspects, which are not impacted by Bavarian, see the
original works [16, 53, 55] and the experimental comparisons by
Matta et al. [45] and AlGhamdi et al. [1].

Implementation, environment, and datasets. We implemented Ba-
varian in C++20 as an extension of NetworKit [59], and compared
it with the implementation of Brandes’s algorithm [14] included in
the same suite. The code for reproducing all experiments and fig-
ures is at http://bit.ly/bvext. We run them on a FreeBSD 11 Amazon
AWS instance with 8 AMD EPYC CPUs and 32GB of RAM. We used
different combinations of values for<, : , X , and on different graphs

http://bit.ly/bvext
http://bit.ly/bvext

5 10 25 50 100 200
MC trials k

0.00

0.01

0.02

0.03

0.04

er
ro

rb
ou

nd
ε

ε decomposition– com-youtube.lcc.net – ab – m =8000
2× k -MCERA
to-2× ERA bound ρ
to-2× RA bound r
to-SD bound ε

(a) Error bound Y decomposition

10000 20000 30000 40000 50000
sample size m

0.000

0.005

0.010

0.015

0.020

0.025

er
ro

rb
ou

nd
ε

ε vs m – cit-HepPh – k=100
bp – emp. max. error
ab – emp. max. error
rk – emp. max. error
bp – this work
ab – this work
rk – this work
bp – prev. work
ab – prev. work
rk – prev. work

(b) Error bound Y vs sample size<

10000 20000 30000 40000 50000
sample size m

500

1000

1500

tim
e

(s
ec

on
ds

)

runtime vs m – cit-HepPh – k=100
exact
bp
rk
ab

(c) Runtime vs sample size<
Figure 1: Experimental results. See description in the text.

Table 1: Dataset characteristics

Graph Vertices Edges

ca-AstroPh 17,903 197,031
cit-HepPh 34,546 421,578
email-Enron 36,682 183,831

p2p-Gnutella31 62,586 147,892
soc-Epinions1 75,879 508,837
com-dblp 317,080 1,049,866

com-youtube 1,134,890 2,987,624

(see below), doing five runs per combination. The difference across
runs is minimal, which is not surprising as most of our results are
not absolutely tight, while being tighter than previous works. We
report the results for the median, the maximum and the minimum
over the runs (represented as shaded areas around the curve for
the median). We only show results for X = 0.1. This parameter has
minimal impact on the performances of our algorithm, and results
for other values of X are qualitatively similar.

We used datasets from the SNAP repository [41]. Their salient
characteristics are reported in Table 1.

5.1 Results
We start by remarking that in all the hundreds of runs we per-
formed, the supremum deviation (i.e., the maximum error in our
estimation) was always less than the error Y returned by Bavarian,
and often significantly so. This fact is not surprising, as Thm. 3.1 is
not necessarily tight. Hence, Bavarian is even more accurate than
the theory guarantees, which leaves space for future improvements.

25% 50% 75%
time (% of exact algorithm’s runtime)

0.004

0.005

0.006

0.007

0.008

er
ro

rb
ou

nd
ε

ε vs time – cit-HepPh – k=100
bp
rk
ab

Figure 2: Error bound Y vs time.
Impact of : . We evaluate the impact of : on Y, as the impact

of : on the runtime is negligible, because Bavarian’s runtime is

heavily dominated by the SSSP computations. We run Bavarian
for different values of : and split Y in its components fromThm. 3.1.
In Fig. 1a, we show the decomposition, and observe the behavior
as function of : , on the com-youtube graph for the ab estimator,
with< = 8000 (results for other values of the parameters, other
datasets, and other estimators are qualitatively similar). The G-axis
of the figure has essentially a logarithmic scale. We can see that Y
rapidly decreases as a function of : , but the returns are diminishing.
The decrease of Y is readily explained by looking at its components:
the dark blue (bottom) part of the bars is twice the :-MCERA (i.e.,
2R̂:

< (F ,S,�)), the orange (2nd from bottom) portion is the differ-
ence between 2d and 2R̂:

< (F ,S,�), the cyan (3rd from bottom) is
the difference between 2A and 2d , and the purple (top portion) is the
difference between Y and 2A .The only part that changes significantly
with : is the orange one, which corresponds to the probabilistic
tail bound from the :-MCERA to the ERA, its expectation w.r.t. �.
As the :-MCERA is tightly concentrated around the ERA, it is not
surprising that with even a relatively small number of MC trials,
this tail bound becomes negligible w.r.t. the other terms.

Impact of<. Figures 1b and 1c show the impact of the sample size
< on the error bound Y and on the runtime, for cit-HepPhwith : =

100 (results for other datasets/parameters are qualitatively similar).
As expected, the error bound decreases approximately as 1/√< and
the runtime increases linearly with<. The use of the :-MCERA
and of Thm. 3.1 allows Bavarian to obtain much smaller error
bounds than previous works for all estimators, and much closer to
the empirical maximum error measured on the sample. The error
bounds can still be tightened, but the leap forward is significant.
From just Fig. 1b, one may be tempted to say that the bp estimator
should be preferred, because it results in a smaller Y. This conclusion
would not be appropriate: the estimators sample from different
populations, and do different work per sample, so their performance
at equal sample sizes is not comparable. Figure 1c clearly shows
that Bavarian with bp takes much longer at each sample size than
with other estimators (which take approximately the same time
because they do similar work per sample), and becomes slower than
the exact algorithm earlier. Thus, per sample, bp is more “efficient”
than the other estimators, but it is less efficient per unit of time. Fig. 2
shows how, when run for the same amounts of time, bp gives a
much worse (i.e., larger) Y than the other estimators. We conclude
that the ab estimator gives the best “bang for the buck,” i.e., the best
Y per unit of time, and should likely be preferred over the others.

6 CONCLUSIONS
We present Bavarian, a suite of algorithms for approximating the
BC of all vertices in a graph, with stringent probabilistic quality
guarantees. Bavarian achieves a better trade-off between sample
size and approximation quality, thanks to the use of :-MCERAs
and their variance-aware bounds. The unifying framework offered
by Bavarian allows for a fair comparison of different sampling-
based estimators for BC, and for us to generalize sample-complexity
results that held only for one estimator. The results of our exper-
imental evaluation of Bavarian show it guarantees much better
approximations at smaller sample sizes, i.e., faster, than the previous
state of the art. A few MC-trials (i.e., low :) are sufficient to get a
low error bound. The ab estimator stands out as more efficient than
the others in terms of “unit of guarantee” per unit of time. In future
work, we plan to generalize the application of the :-MCERA to
other centrality measures, and to design more efficient progressive
sampling algorithms, leveraging martingale approaches.

ACKNOWLEDGMENTS
Part of this work is supported by the National Science Foundation
grant 2006765 and by the DARPA/ARFL grant FA8750.

REFERENCES
[1] Z. AlGhamdi et al. 2017. A Benchmark for Betweenness Centrality Approxima-

tion Algorithms on Large Graphs. In SSDBM’17.
[2] J. M. Anthonisse. 1971. The rush in a directed graph. Technical Report BN 9/71.

Stichting Mathematisch Centrum, Amsterdam, Netherlands.
[3] D. A. Bader et al. 2007. Approximating Betweenness Centrality. In Algorithms

and Models for the Web-Graph, Springer, 124–137.
[4] P. L. Bartlett and S. Mendelson. 2002. Rademacher and Gaussian complexities:

Risk bounds and structural results. J. Mach. Learn. Res. 3, 463–482.
[5] A. Bavelas. 1950. Communication patterns in task-oriented groups. J. Acoust.

Soc. Am. 22, 6 (1950), 725–730.
[6] G. Bennett. 1962. Probability inequalities for the sum of independent random

variables. J. Amer. Statist. Assoc. 57, 297 (1962), 33–45.
[7] E. Bergamini and H. Meyerhenke. 2015. Fully-dynamic Approximation of Be-

tweenness Centrality. In ESA’15. 155–166.
[8] E. Bergamini and H. Meyerhenke. 2016. Approximating Betweenness Centrality

in Fully-dynamic Networks. Internet Math. 12, 5 (2016), 281–314.
[9] E. Bergamini et al. 2015. Approximating Betweenness Centrality in Large

Evolving Networks. In ALENEX ’15. SIAM, 133–146.
[10] P. Boldi and S. Vigna. 2014. Axioms for centrality. Internet Math. 10, 3-4 (2014),

222–262.
[11] F. Bonchi et al. 2016. Centrality measures on big graphs: Exact, approximated,

and distributed algorithms. In WWW’15. 1017–1020.
[12] M. Borassi and E. Natale. 2019. KADABRA is an ADaptive Algorithm for Be-

tweenness via Random Approximation. J. Exp. Alg. 24, 1 (2019).
[13] S. P. Borgatti and M. G. Everett. 2006. A Graph-theoretic perspective on centrality.

Soc. Netw. 28, 4 (2006), 466–484.
[14] U. Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Sociol.

25, 2 (2001), 163–177.
[15] U. Brandes. 2008. On variants of shortest-path betweenness centrality and their

generic computation. Soc. Netw. 30, 2 (2008), 136–145.
[16] U. Brandes and C. Pich. 2007. Centrality estimation in large networks. Int. J.

Bifur. Chaos 17, 7 (2007), 2303–2318.
[17] S. Cabello et al. . 2013. Multiple-source shortest paths in embedded graphs. SIAM

J. Comput. 42, 4 (2013), 1542–1571.
[18] M. H. Chehreghani et al. . 2018. Efficient Exact and Approximate Algorithms for

Computing Betweenness Centrality in Directed Graphs. In PAKDD’18, 752–764.
[19] F. Chierichetti et al. 2016. On sampling nodes in a network. InWWW’16. 471–481.
[20] F. Chierichetti and S. Haddadan. 2018. On the Complexity of Sampling Vertices

Uniformly from a Graph. In ICALP’18.
[21] C. Cousins and M. Riondato. 2020. Sharp uniform convergence bounds through

empirical centralization. In NeurIPS’20.
[22] A.M. de Lima et al. 2020. Estimating the Percolation Centrality of Large Networks

through Pseudo-dimension Theory. In KDD’20. ACM.
[23] S. Dolev et al. 2010. Routing betweenness centrality. J. ACM 57, 4, Article 25

(May 2010), 27 pages.

[24] D. Erdős et al. 2015. A Divide-and-Conquer Algorithm for Betweenness Central-
ity. In SDM ’15. 433–441.

[25] C. Fan et al. 2019. Learning to Identify High Betweenness Centrality Nodes from
Scratch. In CIKM’19. ACM.

[26] L. C. Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry 40 (1977), 35–41.

[27] R. Geisberger et al. 2008. Better Approximation of Betweenness Centrality. In
ALENEX ’08. SIAM, 90–100.

[28] J. Ghurye and .M Pop. 2016. Better Identification of Repeats in Metagenomic
Scaffolding. In WABI 2016. Springer, 174–184.

[29] O. Green et al. 2012. A Fast Algorithm for Streaming Betweenness Centrality. In
PASSAT ’12. IEEE, 11–20.

[30] D. Haussler. 1995. Sphere packing numbers for subsets of the Boolean n-cube
with bounded Vapnik-Chervonenkis dimension. J. Comb. Th., Ser. A 69, 2 (1995).

[31] T. Hayashi et al. 2015. Fully Dynamic Betweenness Centrality Maintenance on
Massive Networks. VLDB’16 (2015).

[32] W. Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. J. Am. Stat. Assoc. 58, 301 (1963), 13–30.

[33] R. Jacob et al. 2005. Algorithms for Centrality Indices. In Network Analysis.
Springer, 62–82.

[34] G. H. John and P. Langley. 1996. Static Versus Dynamic Sampling for Data Mining.
In KDD ’96. The AAAI Press, Menlo Park, CA, USA, 367–370.

[35] M. Kas et al. 2013. Incremental Algorithm for Updating Betweenness Centrality
in Dynamically Growing Networks. In ASONAM ’13. IEEE/ACM, 33–40.

[36] L. Katzir et al. 2014. Estimating sizes of social networks via biased sampling.
Internet Math. 10, 3-4 (2014).

[37] V. Koltchinskii. 2001. Rademacher penalties and structural risk minimization.
IEEE Trans. Inf. Th. 47, 5 (July 2001), 1902–1914.

[38] A. Kontorovich. 2016. Agnostic PAC lower bound. https://www.cs.bgu.ac.il/
~asml162/wiki.files/agnostic-pac-lb.pdf

[39] N. Kourtellis et al. 2012. Identifying high betweenness centrality nodes in large
social networks. Soc. Netw. Anal. Mining 3, 4 (2012), 899–914.

[40] N. Kourtellis et al. 2015. Scalable Online Betweenness Centrality in Evolving
Graphs. IEEE Trans. Knowl. Data Eng. 27, 9 (2015), 2494–2506.

[41] J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data.

[42] Y. Li et al. 2019. Electric Power Grid Invulnerability Under Intentional Edge-Based
Attacks. In DependSys’19, 454–461.

[43] Y.-S. Lim et al. 2011. Online estimating the k central nodes of a network. In IEEE
Netw. Sci. Work. (NSW’11). 118–122.

[44] A. S. Maiya and T. Y. Berger-Wolf. 2010. Online Sampling of High Centrality
Individuals in Social Networks. In PAKDD’10, 91–98.

[45] J. Matta et al. 2019. Comparing the speed and accuracy of approaches to be-
tweenness centrality approximation. Comp. Soc. Netw. 6, 1 (2019), 2.

[46] A. McLaughlin and D. A. Bader. 2014. Scalable and High Performance Between-
ness Centrality on the GPU. SC’14 (Nov 2014).

[47] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community
structure in networks. Phys. Rev. E 69 (Feb. 2004). Issue 2.

[48] T. Opsahl et al. 2010. Node centrality in weighted networks: Generalizing degree
and shortest paths. Soc. Netw. 32, 3 (2010), 245–251.

[49] J. Pfeffer and K. M. Carley. 2012. k-Centralities: local approximations of global
measures based on shortest paths. InWWW ’12. ACM, 1043–1050.

[50] D. Pollard. 1984. Convergence of stochastic processes. Springer-Verlag.
[51] M. Pontecorvi and V. Ramachandran. 2015. Fully Dynamic Betweenness Central-

ity. In ISAAC ’15. 331–342.
[52] D. Prountzos and K. Pingali. 2013. Betweenness centrality: algorithms and

implementations. In PPoPP ’13. ACM 35–46.
[53] M. Riondato and E. M. Kornaropoulos. 2016. Fast approximation of betweenness

centrality through sampling. Data Min. Knowl. Disc. 30, 2 (2016), 438–475.
[54] M. Riondato and E. Upfal. 2015. Mining Frequent Itemsets through Progressive

Sampling with Rademacher Averages. In KDD ’15. ACM, 1005–1014.
[55] M. Riondato and E. Upfal. 2018. ABRA: Approximating Betweenness Centrality

in Static and Dynamic Graphs with Rademacher Averages. ACM Trans. Knowl.
Disc. Data 12, 5 (2018), 61.

[56] A. E. Sarıyüce et al. 2017. Graph Manipulations for Fast Centrality Computation.
ACM Trans. Knowl. Disc. Data 11, 3 (2017), 1–25.

[57] S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

[58] N. Srebro and K. Sridharan. 2010. Note on refined Dudley integral covering
number bound. (2010). http://www.cs.cornell.edu/~sridharan/dudley.pdf.

[59] C. L. Staudt et al., 2016. NetworKit: An Interactive Tool Suite for High-
Performance Network Analysis. Netw. Sci. 4, 4 (2016).

[60] V. N. Vapnik. 1998. Statistical learning theory. Wiley.
[61] V. N. Vapnik and A. J. Chervonenkis. 1971. On the Uniform Convergence of

Relative Frequencies of Events to Their Probabilities. Th. Prob. Appl. 16, 2 (1971),
264–280.

[62] Y. Yoshida. 2014. Almost Linear-time Algorithms for Adaptive Betweenness
Centrality Using Hypergraph Sketches. In KDD ’14. ACM, 1416–1425.

https://www.cs.bgu.ac.il/~asml162/wiki.files/agnostic-pac-lb.pdf
https://www.cs.bgu.ac.il/~asml162/wiki.files/agnostic-pac-lb.pdf
http://snap.stanford.edu/data
http://www.cs.cornell.edu/~sridharan/dudley.pdf

A ADDITIONAL MATERIALS FOR BAVARIAN
A.1 Reproducibility and Additional Results
All the code and datasets can be found in the archive containing also
the extended version of this article at http://bit.ly/bvext. It includes
a README.txt file with instructions, and a script to run all our
experiments and to generate all the figures. Additional experimental
results can be found in the extended version of this article in the
same archive.

A.2 Missing Proofs
The proof of Thm. 3.1 is in App. A.2 of the extended online version
available at http://bit.ly/bvext.

We now prove Thm. 4.2.
The Rademacher average of a family F of functions w.r.t. the

probability distribution c over the domain D of the functions in
F is the expectation, w.r.t. both the sample S (which is drawn
according to c<) and the bag of < :-dimensional Rademacher
vectors � of the :-MCERA:

R< (F , c) � ES,�
[
R̂:
< (F ,S,�)

]
.

The following result, a pinnacle of statistical learning theory, con-
nects the Rademacher average to the supremum deviation

Theorem A.1. With probability at least 1 − [over the choice of
S, it holds

SD(F ,S) ≤ 2R< (F , c) +

√
ln 2

[

2<
. (12)

In all cases of interest for us, F and c are associated to a BC
approximation method A (see Sect. 3.2), so we use the notation
R< (A) to refer to R< (FA, cA).

Lemma A.2. Let 3 ≥ vd(�) or 3 = 3 if� is undirected and there is
at most one SP between any pair of vertices in � . For some universal
constant � [30, 38, 58], it holds that

R< (rk) ≤
√

�3

<
.

Proof. The thesis follows from the fact that 3 is an upper bound
to the VC-dimension [61] of the BC estimation task on� , as shown
by Riondato and Kornaropoulos [53, Thm. 2], and from a standard
result from statistical learning theory connecting the Rademacher
average to the VC-dimension [30, 58]. �

The proof of Thm. 4.2 for the rk estimator then follows from
using the upper bound in Lemma A.2 as an upper bound to the
Rademacher average in Thm. A.1, requiring the l.h.s. of (12) to be
at most Ȳ, and solving for< to obtain the expression for m∗ (Ȳ, [).

We show next that Thm. 4.2 holds also for the estimators ab and
bp. To this end, we need to introduce the concepts of unique-SP-
enforcers and unique-SP-enforcing families.

Definition A.3. A (unique-SP-)enforcer t is a function from+ ×+
to the set of all SPs in the graph � , i.e.,

t : + ×+ →
⋃

(D,E) ∈+×+
ΓDE,

mapping each pair (D, E) ∈ + × + to a SP ? ∈ ΓDE if such a path
exists (i.e., if ΓDE ≠ ∅), and to ∅ otherwise.

There are
@ �

∏
(D,E) ∈+×+
s.t. fDE ≥1

fDE (13)

different enforcers. Let Q denote the set of all enforcers. Clearly
@ = |Q|.

Definition A.4. Given an enforcer t ∈ Q, the (unique-SP-)enforc-
ing family Tt associated to t is a family of functions from to {0, 1},
such that T contains one function 5t,F for eachF ∈ + defined as

5t,F (D, E) �
{
1 ifF ∈ int(t(D, E))
0 otherwise

.

The following result holds for every enforcing family Tt, t ∈ Q.

Lemma A.5. For any t ∈ Q, the VC-dimension of Tt is at most
vd(�), unless @ = 1, in which case the VC-dimension of the only Tt is
exactly 3.

Proof. The proof for the general case is exactly the same as the
one for [53, Thm. 2], while the one for the case @ = 1 is the one
for [53, Lemma 2]. �

A family Tt cannot generally be seen as the family resulting
from imposing a set of weights on the edges of � enforcing unique
shortest paths between every pair of connected vertices [17]. The
reason is that tmay be such that there exists (D, E) ∈ + ×+ such that
there are two vertices (F, I) on the enforced SP t(D, E) for which
t(F, I) is not a subset of t(D, E). In other words, t does not enforce
“consistent” SPs, which instead must happen when imposing a set
of weights as above. For this reason, the result from [53, Lemma 2]
can only be used when there is a single enforcer in Q, as it relies
on such consistency of the SPs.

The following result connects the set {Tt, t ∈ Q} of enforcing
families to the family Fab used by the ab estimator (see (3)).

Lemma A.6. For anyF ∈ + , let 5F ∈ Fab be the function associ-
ated to F in this family, as defined in (3). For any (D, E) ∈ Dab, it
holds

5F (D, E) =
1
@

∑
t∈Q

5t,F (D, E) .

Proof. The thesis is immediate when fDE (F) = 0, as 5t,F (D, E) =
0 for each t ∈ Q. Let now ΓDE (F) ⊆ ΓDE be the set of all SPs from D

to E thatF is internal to. From the definition of enforcer, it holds
that for each SP ? ∈ ΓDE (F), there are exactly

I �
∏

(G,~) ∈+×+r{(D,E) }
s.t. fG~ ≥1

fG~ (14)

enforcers in Q mapping (D, E) to ? . Thus there are exactly fDE (F) ·I
enforcers that map (D, E) to a SP to which F is internal. It holds
5t,F (D, E) = 1 iff t is one of these fDE (F) · I enforcers. It follows
that ∑

t∈Q
5t,F (D, E) = fDE (F) · I .

It also holds, from (14) and (13), that
1

fDE
=
I

@
.

http://bit.ly/bvext
http://bit.ly/bvext

The thesis follows from these two identities as
fDE (F)
fDE

=
fDE (F)I

@
=

1
@

∑
t∈Q

5t,F (D, E) .

�

The following lemma corresponds to Lemma A.2 for the ab esti-
mator. By using it with Thm. A.1, we obtain Thm. 4.2 for ab.

Lemma A.7. Let 3 ≥ vd(�) or 3 = 3 if� is undirected and there is
at most one SP between any pair of vertices in � . For some universal
constant � [30, 38, 58], it holds that

R< (ab) ≤
√

�3

<
.

Proof. Let S = {(D1, E1), . . . , (D<, E<)} be a sample from Dab
and � = {,1, . . . ,,<} be a bag of < :-dimensional Rademacher
vectors. From Lemma A.6 it holds

R̂<
:
(Fab,S,�) =

1
<:

:∑
9=1

sup
F∈+

<∑
8=1

(
,8, 9

1
@

∑
t∈Q

5t,F (D8 , E8)
)

.

From here, thanks to the fact that the constant zero function belongs
to F , we can use the subadditivity of the supremum operator to get

R̂<
:
(Fab,S,�) ≤

1
@

∑
t∈Q

1
<:

:∑
9=1

sup
F∈+

<∑
8=1

(
,8, 9 5t,F (D8 , E8)

)
=

1
@

∑
t∈Q

R̂<
:
(Tt,S,�) .

The above inequality is true for every choice of S and �, so it must
also hold that

R< (ab) ≤ 1
@

∑
t∈Q

R< (Tt, cab) .

Lemma A.5 allows us to say that each summand on the r.h.s. is at
most

√
(�3)/<, and the proof is complete. �

We now complete the discussion of Thm. 4.2 by showing results
equivalent to Lemmas A.6 and A.7 for the bp estimator.

Lemma A.8. For any F ∈ + , let 5F ∈ Fbp be the function as-
sociated to F in this family, as defined in (4). For any D ∈ Dbp, it
holds

5F (D) =
1
@

1
|+ | − 1

∑
E≠F

∑
t∈Q

5t,F (D, E) .

Proof. The proof follows from the definition of 5F (D) and of
5F (D, E) in (3) and from Lemma A.6 �

Lemma A.9. Let 3 ≥ vd(�) or 3 = 3 if� is undirected and there is
at most one SP between any pair of vertices in � . For some universal
constant � [30, 38, 58], it holds that

R< (bp) ≤
√

�3

<
.

Proof. The proof follows the same step as the one for LemmaA.7,
but using Lemma A.8 in place of Lemma A.6. �

We now show the proof for Thm. 4.3.

Theorem 4.3. With probability at least 1 − X (over the runs of the
algorithm), the pair (�̃, Y) returned by Bavarian-P is such that

max
E∈+

���b̃A (E) − b(E)
��� < Y ≤ Ȳ .

Proof. Consider a variant V of Bavarian-P that, rather than
sampling progressively, receives as input, in addition to all the
parameters listed in Alg. 2, an ordered sequence

Z = {(B1,,1), . . . , (B<)−1 ,,<)−1)},
where B 9 ∈ DA is sampled independently (from anything else) ac-
cording to cA, and , 9 is an independently-sampled :-dimensional
vector of independent Rademacher variables. The variant V works
essentially as Alg. 2 with the exception that, instead of sampling
elements of cA and sampling vectors of Rademacher variables, it
just picks the “next” element fromZ as needed.

The reason for introducing V is to make it evident that it is
possible to reason about properties of Z independently from the
workings of the algorithm, asZ is fixed before the algorithm even
starts. Next, we show that V returns a pair (�̃, Y) with the desired
properties mentioned in the thesis, and thenwe argue how to extend
these properties to Alg. 2.

Fix 8 ∈ [0,) − 1], and consider the value Y8 computed by V
using the sequence of samplesZ8 = {(B1,,1), . . . , (B<8

,,<8
)}. An

application ofThm. 3.1 allows us to say that, with probability at least
1−X/) (over the choice ofZ8), it holdsmaxE∈+

���b̃A (E) − b(E)
��� < Y8 .

We can then apply the union bound over the) iterations, and
obtain that, with probability at least 1 − X over its runs (i.e., over
the choice of the sequenceZ), the output (�̃, Y) of V satisfies

max
E∈+

���b̃A (E) − b(E)
��� < Y . (15)

The last sample size<)−1 must satisfy the requirement from (11)
and when using this sample size, V outputs Y = Ȳ. Combining this
fact with (15), we get that the output (�̃, Y) of V satisfies

max
E∈+

���b̃A (E) − b(E)
��� < Y ≤ Ȳ .

We now argue that the properties enjoyed by V can be extended to
Bavarian-P. Indeed to each execution of V with a set of parameters,
we can associate an execution of Bavarian-P with the same set of
parameters (minusZ) such that the sequence of random bits used
to generateZ is given to Bavarian-P and used to draw samples
from DA and the Rademacher vectors , when needed. Clearly, the
ordered sequence of samples and Rademacher vectors generated
by Bavarian-P in this execution is a sub-sequence (potentially
improper) of the sequenceZ given in input to V, and specifically
exactly the sub-sequence of all and only the pairs that the execu-
tion of V “used” (the length of this sub-sequence is obviously<8

for some 8 ∈ {0, . . . ,) − 1}). When using the sample size<)−1, V
returns Ȳ. The stopping condition on line 9 of Alg. 2 is guaranteed to
be satisfied at some iteration, i.e., Bavarian-P will terminate. The
pair (�̃, Y) returned by this execution of Bavarian-P is the same as
the one returned by the associated execution of V, and this corre-
spondence is true for all executions of the two algorithms. Hence,
the same properties on the output of V also hold for Bavarian-P,
and the proof is complete. �

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Betweenness Centrality
	3.2 BC Estimation
	3.3 Bounding the Supremum Deviation

	4 The Bavarian framework
	4.1 Choosing the parameters m and k
	4.2 Progressive sampling algorithm
	4.3 Extensions

	5 Experimental evaluation
	5.1 Results

	6 Conclusions
	Acknowledgments
	References
	A Additional materials for Bavarian
	A.1 Reproducibility and Additional Results
	A.2 Missing Proofs

